

Experimental approach for generating data for model verification

27 June 2022

Università di Pisa

Experimental approach for generating data for model verification

G. Gonzalez, A. Nechaev, I. Balducci, A. Bertei, P. M. Pihko, P. Peljo

CompBat WP4

CompBat: Developing tools for discovery of new prospective candidates for next generation RFBs

WP4: Model validation and experimental data generation

Main objective: High quality data generation for verifying the models

Strategy: Synthesis of key candidates \rightarrow electrochemical testing \rightarrow cell and short stack testing

Partners involved: UTU, JYU, TTK, UU, UNIPI, SKOLTECH

Pyridoxal database

comp

Organic synthesis (JYU)

- **Goal**: Establish a synthetic route to the pyridoxine/pyridoxal core battery materials.
- This will assist in answering the following key questions:
 - whether the pyridoxal/pyridoxine core has the desired redox potential and stability for RFB cycles
 - which factors, such as substitution patterns, affect these properties

Synthetic approach

Organic synthesis (JYU)

 Silyl protection (TBDMS) of pyridoxal is the key step in the synthesis of ketone subfamily of the molecules. We have synthesized our first ketone derivative **11** in five synthetic steps.

TESTING NEW MATERIALS COMPOUNDS SYNTHETIZED IN JYVÄSKYLÄ

1 mN in 0,1 M NaOH

compbat

TESTING NEW MATERIALS COMPOUNDS SYNTHETIZED IN JYVÄSKYLÄ

TESTING NEW MATERIALS COMPOUNDS SYNTHETIZED IN JYVÄSKYLÄ

Computed trends for redox potentials reproduced in the experiments

Computed trends for redox potentials reproduced in the experiments

Conclusions

More stable

Unstable

Stability studies

Analysis of PYR database

Fractional spin density at the N atom of the central ring

compbat

Stability studies

Analysis of PYR database

Stable molecule synthesized

Flow battery test bench

- 1. Open circuit potential after the main cell.
- 2. Open circuit potential before the main cell.
- 3. Potential of the Positive Electrode against Reference Electrode Ag/AgCl
- 4. Potential of the Negative Electrode against Reference Electrode Ag/AgCl
- 5. Potential of the Positive Electrode after the main cell against the potential of the Positive Electrode in the main cell (Positive Electrode polarization).
- 6. Potential of the negative Electrode after the main cell against the potential of the Negative Electrode in the main cell (Negative Electrode polarization).
- 7. Main Cell potential and current density
- 8. Potential of the Reference Electrode of the Positive side against the Reference Electrode of the Negative side (membrane potential drop).

Gabriel Gonzalez University of Turku

Test bench for flow batteries

compbat

Gabriel Gonzalez University of Turku

Test bench for flow batteries

compbat

Gabriel Gonzalez University of Turku

Test bench for flow batteries

compbat

Data for validation and development of modelling tools

Cell replacement by short stack.

pH and UV/Vis sensors etc. will be added in the future for accurate evaluation of SOC.

Flow battery testing

- Advantages of the set-up
 - 8 potentials measured at once vs. 1 typically measured
 - Better understanding of the behaviour of the system
 - Produces data to compare the values in simulations
 - More accurate evaluation of different parameters in simulations

Model validation

Model validation

Next Generation Batteries with solid boosters

Solid boosters

Ferro/ferricyanide coupled with Prussian blue

Data for modelling

The concept of solid boosters and molecular wiring

The concept of solid boosters and molecular wiring

Comparing different booster recipes

Starting point

80% Redox solid: Prussian White K₂Fe^{II}Fe^{III}(CN)₆ 10% Conductive additive: Carbon Black (Super P) 10% Binder: PEAA (poly(ethylene-co-acrylic acid)) Solvent: Tetrahydrofuran (THF)

PEAA

Initial testing

Optimizing the booster composition

System optimization

- Excellent experimental set-up to generate data for verification of simulations
- Test bench for model verification developed
 - Compatible with short-stack
- Experimental set-up to measure kinetics of charging and dischargin of solid boosters developed

Questions & Answers

