

Pyridoxal derivatives as anolytes for aqueous organic redox flow batteries: Computational screening

A Hamza, Á. Madarász, F. B. Németh, A. Nechaev, P. M. Pihko, P. Peljo, I. Pápai

CompBat WP1

CompBat: Developing tools for discovery of new prospective candidates for next generation RFBs

WP1: High-throughput screening and machine learning

Main objective: Development of a HTS methodology for identification of promising RFB compounds Strategy: DFT molecular database \rightarrow assessment of ML methods \rightarrow iterative expansion of database HTS requirements: large database – reliable data – automatization \rightarrow efficient computational protocol

Partners involved: TTK (RCNS), Aalto, JYU, UTU

Computational protocol

a) <u>initial 3D structures</u> – automatic generation of 2D (Lewis) structures (*CombiGlide*), conversion to 3D (*LigPrep*); protonation state at pH = 7 in water (*Epic*)

CompBat-Sonar workshop – June 27, 2022

Computational protocol

- a) <u>initial 3D structures</u> automatic generation of 2D (Lewis) structures (*CombiGlide*), conversion to 3D (*LigPrep*); protonation state at pH = 7 in water (*Epic*)
- b) <u>conformational analysis</u> geometry optimization at semiempirical GFN2-xTB level (*xtb* package); finite temperature and implicit solvent effects (room temperature, water); CREST procedure for extensive conformational search (*crest* utility) → most stable conformers

preoptimization

GFN-xTB method (semiempirical)

Grimme et al., *JCTC* **2017**, *13*, 1989; Grimme et al., *JCTC* **2019**, *15*, 1652

comformational search

CREST method (Conformer–**R**otamer Ensemble Sampling Too)

Grimme et al., *PCCP* **2020**, *22*, 7169

— the most stable structure

Computational protocol

- a) <u>initial 3D structures</u> automatic generation of 2D (Lewis) structures (*CombiGlide*), conversion to 3D (*LigPrep*); protonation state at pH = 7 in water (*Epic*)
- b) <u>conformational analysis</u> geometry optimization at semiempirical GFN2-xTB level (*xtb* package); finite temperature and implicit solvent effects (room temperature, water); CREST procedure for extensive conformational search (*crest* utility) → most stable conformers
- c) <u>electronic energies</u> DFT calculations at M06-2X/6-311+G^{**} level (*Gaussian*), single-point calculations in solution phase (SMD) \rightarrow aqueous phase solvation free energies

Computational protocol

- a) <u>initial 3D structures</u> automatic generation of 2D (Lewis) structures (*CombiGlide*), conversion to 3D (*LigPrep*); protonation state at pH = 7 in water (*Epic*)
- b) <u>conformational analysis</u> geometry optimization at semiempirical GFN2-xTB level (*xtb* package); finite temperature and implicit solvent effects (room temperature, water); CREST procedure for extensive conformational search (*crest* utility) → most stable conformers
- c) <u>electronic energies</u> DFT calculations at M06-2X/6-311+G^{**} level (*Gaussian*), single-point calculations in solution phase (SMD) \rightarrow aqueous phase solvation free energies
- d) <u>Gibbs free energies</u> $G_{red/ox}^{aq} = E_{red/ox}^{DFT} + \Delta G^{xtb} \rightarrow$ redox potentials according to the Nernst formula

Computational protocol

- a) <u>initial 3D structures</u> automatic generation of 2D (Lewis) structures (*CombiGlide*), conversion to 3D (*LigPrep*); protonation state at pH = 7 in water (*Epic*)
- b) <u>conformational analysis</u> geometry optimization at semiempirical GFN2-xTB level (*xtb* package); finite temperature and implicit solvent effects (room temperature, water); CREST procedure for extensive conformational search (*crest* utility) → most stable conformers
- c) <u>electronic energies</u> DFT calculations at M06-2X/6-311+G^{**} level (*Gaussian*), single-point calculations in solution phase (SMD) \rightarrow aqueous phase solvation free energies
- d) <u>Gibbs free energies</u> $G_{red/ox}^{aq} = E_{red/ox}^{DFT} + \Delta G^{xtb} \rightarrow$ redox potentials according to the Nernst formula

Composite method – force field + semiempirical + accurate QC

Software packages: *Schrödinger, xtb, Gaussian* + own scripts

Test and benchmark calculations

188 organic molecules (consistent CV data)

Tests wrt experimental data

Roth et al., Synlett. 2016, 27, 714

Test and benchmark calculations

Benchmarks wrt full DFT data

comp

50/6712 molecules (diversity based selection) full DFT calculations opt: M06-2X/6-311G** SP: M06-2X/6-311⁺G(3df, 3pd)

smaller basis set is sufficient choosing the most stable conformer is reasonable in some cases xTB results in ring closure \rightarrow 6558 molecules sufficient level of correlation

Histplotly utility

Database in tabulated form

NR	РОТ	R3	R1	R2	СНG	SYS
1	-1.29	СООН	P1	al	0	pyr1
2	-1.26	СООН	P1	a2	0	pyr1
3	-1.34	СООН	P1	a3	0	pyr1
4	-1.37	СООН	P1	a4	0	pyr1
5	-1.27	СООН	P1	a5	0	pyr1
6	-1.28	СООН	P1	a6	0	pyr1
7	-1.35	СООН	P1	а7	0	pyr1
8	-1.25	СООН	P1	a8	0	pyr1
9	-1.2	СООН	P1	b1	0	pyr1
10	-1.21	СООН	P1	b2	0	pyr1
11	-1.22	СООН	P1	b3	0	pyr1
12	-1.22	СООН	P1	b4	0	pyr1

histogram analyzer https://histplotly.herokuapp.com/

Reduction potentials

Reduction potentials

electrochemically relevant range (above -1 V) has lower populations, where almost all compounds are from pyr1

Reduction potentials

 $HO \xrightarrow{R_3} R_2$ $HO \xrightarrow{\oplus} R_2$

effect of R₃ substitution

Molecular representations

 CH_3

CH₃

Cc1c[n+](C)c(C)c(O)c1C(=O)[O-](atoms, bonds, connectivity)

(presence or absence of substructures)

(atoms = nodes, bonds = edges each node has a feature vector)

c) Graph representation

comp

Machine learning methods

- a) classic ML methods (Aalto)
 - Random Forest analysis followed by SHAP feature attribution analysis
- b) deep-learning methods (TTK)
 - convolutional neural networks (CNN)
 - extract higher-level features from the raw input
 - DeepChem open source tool
 - collaboration with Budapest University of Technology
 - 3D graph convolutional network (3DGCN)

Results

Performance of deep learning methods for reduction potentials (in V)

	Test MAE / V	Test RMSD / V	Test R ²
GraphConvModel	0.113	0.144	0.936
GCNModel	0.084	0.109	0.957
GATModel	0.093	0.124	0.929
DAGModel	0.076	0.106	0.943
AttentiveFPModel	0.061	0.086	0.963
Smiles2Vec	0.066	0.095	0.955
3DGCN	0.068	0.099	0.952

(MAE: mean absolute error; RMSE: root mean square error; R²: coefficient of determination;

remarkable performance exceeding the accuracy of the QC protocol

Experimental verification

Gabriel Gonzalez University of Turku

Anton Nechaev Petri Pihko University of Jyväskylä

Computational evaluation of stability

The bond elongations (in Å) for the synthesized molecules. Values obtained from DFT geometry optimizations are shown in parenthesis.

Computational evaluation of stability

The bond elongations (in Å) for the synthesized molecules. Values obtained from DFT geometry optimizations are shown in parenthesis.

Elongation unlikely to explain instability upon reduction. Experimental analysis suggests dimerization.

compbat

Two descriptors

electronic max. spin density

Two descriptors

Analysis of PYR database

Fractional spin density at the N atom of the central ring

compbat

CompBat-Sonar workshop – June 27, 2022

 R_2

Analysis of PYR database

compbat

Fractional spin density at the N atom of the central ring

Analysis of PYR database

Fractional spin density at the N atom of the central ring

compbat

Analysis of PYR database

Stable molecule synthesized

Summary

WP1 results

- efficient computational protocol for building the molecular database
- molecular database of pyridoxal compounds,
- histogram analyzer (histplotly)
- assessment of machine learning models, all tested models work well
- application of a new approach to radical stability

work in progress

- more diverse molecular database (ChEMBL)
- ML redox potential predictions for 100.000 molecules

Participants

People involved from TTK and BME

Andrea Hamza Ádám Madarász Flóra Németh Gergely Laczkó Ákos Galvács

Imre Pápai

Luca Szegletes

Mátyás Pelle Marcell Mészáros Marcell Csikós Tugyi Beatrix El-Ali Maya

Thanks to

